[URI Online Judge] – 1021 – Banknotes and Coins

Read a floating point value with two decimal places. This represents a monetary value. Next, calculate the fewest possible notes and coins in which the value can be decomposed. The considered notes are of 100, 50, 20, 10, 5, 2. The possible coins are of 1, 0.50, 0.25, 0.10, 0.05 and 0.01. Print the message “NOTAS:” followed by the list of notes and the message “MOEDAS:” followed by the list of coins.

Input

The input file contain float point number N (0 ≤ N ≤ 1000000.00).

Output

Print the minimum quantity of banknotes and coins necessary to change the initial value, like as the given example.

Sample Input Sample Output
576.73 NOTAS:
5 nota(s) de R$ 100.00
1 nota(s) de R$ 50.00
1 nota(s) de R$ 20.00
0 nota(s) de R$ 10.00
1 nota(s) de R$ 5.00
0 nota(s) de R$ 2.00
MOEDAS:
1 moeda(s) de R$ 1.00
1 moeda(s) de R$ 0.50
0 moeda(s) de R$ 0.25
2 moeda(s) de R$ 0.10
0 moeda(s) de R$ 0.05
3 moeda(s) de R$ 0.01
4.00 NOTAS:
0 nota(s) de R$ 100.00
0 nota(s) de R$ 50.00
0 nota(s) de R$ 20.00
0 nota(s) de R$ 10.00
0 nota(s) de R$ 5.00
2 nota(s) de R$ 2.00
MOEDAS:
0 moeda(s) de R$ 1.00
0 moeda(s) de R$ 0.50
0 moeda(s) de R$ 0.25
0 moeda(s) de R$ 0.10
0 moeda(s) de R$ 0.05
0 moeda(s) de R$ 0.01
91.01 NOTAS:
0 nota(s) de R$ 100.00
1 nota(s) de R$ 50.00
2 nota(s) de R$ 20.00
0 nota(s) de R$ 10.00
0 nota(s) de R$ 5.00
0 nota(s) de R$ 2.00
MOEDAS:
1 moeda(s) de R$ 1.00
0 moeda(s) de R$ 0.50
0 moeda(s) de R$ 0.25
0 moeda(s) de R$ 0.10
0 moeda(s) de R$ 0.05
1 moeda(s) de R$ 0.01

Solution:

#include <cstdio>
int main(){
 double n, d[] = {100.0, 50.0, 20.0, 10.0, 5.0, 2.0, 1.0, 0.5, 0.25, 0.10, 0.05, 0.01};
 int t = 0, c;
scanf("%lf", &n);
 printf("NOTAS:\n");
t = 0;
 while (n >= 0.01){
 c = 0;
 while (n >= d[t]){
 n -= d[t];
 c++;
 }
 if (d[t] == 1.0)
 printf("MOEDAS:\n");
 if (d[t] >= 2.0 )
 printf("%d nota(s) de R$ %.2f\n", c, d[t]);
 else
 printf("%d moeda(s) de R$ %.2f\n", c, d[t]);
 t++;
 }
 return 0;
}
Advertisements

One thought on “[URI Online Judge] – 1021 – Banknotes and Coins

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s